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The problem of course control for underactuated surface ship is addressed in this paper. Firstly, neural networks are adopted to
determine the parameters of the unknown part of ideal virtual backstepping control, even the weight values of neural network
are updated by adaptive technique. Then uniform stability for the convergence of course tracking errors has been proven through
Lyapunov stability theory. Finally, simulation experiments are carried out to illustrate the effectiveness of proposed control method.

1. Introduction

Tracking control performance for surface vessel along the
predefined route has been an essential control problem
for marine autopilot system design, and it has received
considerable attractions from control community. In 1922,
proportional-integral-derivative (PID) autopilot for ship
steering was presented by Nicholas Minosky [1]. PID con-
troller greatly improved the performance of autopilots. Until
the 1980s almost all makes of autopilots were based on these
controllers. One challenge for tracking control of surface
vessel based on above method is that the systems are often
underactuated by the swaymotion due to weight, complexity,
and efficiency considerations and exhibit nonholonomic
constraints, which meets Brocket’s theorem that there is no
continuous or even smooth time-invariant state feedback
law that can stabilize the system to the origin [2]. Another
challenge is that the vessel model itself exhibits severe
nonlinear characteristic and model uncertainties induced by
the ocean environment [3, 4].

For the ship with nonlinear maneuvering characteristics
and without uncertainties, a state feedback linearization
control law was designed [5], while feedback linearization
with saturation and slew rate limiting actuators was dis-
cussed [6]. Later, combined with a genetic algorithm, the
backstepping method was employed to develop a nonlinear
ship course controller by Witkowska and Smierzchalski [7],

where the ship course parameters were automatically tuned
to the optimal values with the aid of a genetic algorithm.
Even considering the ship steering model with both con-
stant parametric uncertainties and input disturbance with
unknown bound, a robust adaptive nonlinear control law
was presented based on projection approach and Lyapunov
stability theory [8]. Recently many papers have tackled these
problems based on Lyapunov theory [9–12]. In [13–15] a
global tracking controller for underactuated ship is addressed
with nonzero off-diagonal terms, the reference trajectory
is generated by using a virtual target guidance algorithm,
and the controller designed is facilitated by an introduction
of changing the ship outputs, several coordinate trans-
formations, and backstepping method. And the controller
design is heavily depending on accurate dynamic model; the
robustness against disturbance has not been addressed. A
method using backstepping adaptive dynamical slidingmode
control is presented for path following control of USV in
[16], the control system takes account of the modeling errors
and disturbances, and simplified tracking error dynamics
are obtained by assuming that the sway velocity is small
which can be neglected in the controller design and only for
straight line path tracking can be achieved. The LOS based
guidance law is also used in the controller design which
causes the complexity of computing high-order derivative of
virtual control. In [17], a transformation of vessel kinematics
to the Serret-Frenet frame is introduced by exploring an extra
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degree of freedom by controlling explicitly the progression
rate of the virtual target along the path and overcomes the
major singular problem; approach angle is introduced for
controller design via backstepping method. Neural networks
are introduced to enhance system stability and transient
performance, which can handle the known dynamics and
uncertainties of systems well [18–20]. Particularly in [12]
a single hidden layer neural network (SHLNN) is adopted
to obtain the adaptive signal online, but the choice of the
single hidden layer neural network is limited by the number
of hidden layer node selections that will affect the online
learning speed and accuracy and cannot produce a better
estimation effect on the fast changing disturbances.

Therefore, a solution to the course control of underac-
tuated surface vessel is addressed in this paper. In view of
the characteristics of the underactuated performance, the
backstepping control method is used to deal with above
problem. The direct adaptive neural network is adopted to
design control law by using the RBF neural network to
overcome the problem that the ideal virtual control cannot be
used directly in practice. The weights of the neural network
are updated by adaptive technique to guarantee the stability
of the closed-loop system through Lyapunov stability theory.
Simulation results are illustrated to verify the performance of
the proposed adaptive neural network controller with good
precision.

2. Adaptive Robust Neural Network
Controller Design

2.1. Problem Description. Consider the following nonlinear
systems:
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2.2. Direct Adaptive Neural Network Controller Design. In
view of the problems and solutions described in the last
section, the direct adaptive neural network controller for

nonlinear systems with RBF neural network is chosen.
Detailed design steps will be described in the following.
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Consider the following Lyapunov function:

𝑉

1
=

1

2𝑔

1
(𝑥

1
)

𝑧

2

1
+

1

2

̃

𝑊

𝑇

1
Γ

−1

1
̃

𝑊

1
, (4)

where ̃𝑊
1
=

̂

𝑊

1
−𝑊

∗

1
,𝑊∗
1
represents the ideal weight vector

of neural network, ̂𝑊
1
represents the estimated value of the

neural network weight vector, ̃𝑊
1
represents the estimation

error of weight vector, Γ
1
= Γ

𝑇

1
> 0 is the adaptive gainmatrix,
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According to Assumption 1, we can get
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There is an ideal virtual feedback control law:

𝛼

∗

1
= −𝑐

1
𝑧

1
− [

𝑓

1
(𝑥

1
) − 𝑥̇

𝑑1

𝑔

1
(𝑥

1
)

+

𝑧

1
𝜌

2

1

2𝑔

2

1
(𝑥

1
)

] , (7)

where 𝑐
1
> 0 is designed controller parameter.
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Adaptive law can be chosen as follows:
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According to Assumption 1 we can get

̇

𝑉

2
≤

̇

𝑉

1
+ 𝑧

2
(𝑧

3
+ 𝛼

2
+

𝑓

2
(𝑥

2
) − 𝛼̇

1

𝑔

2
(𝑥

2
)

) +

𝑧

2

2
𝜌

2

2

2𝑔

2

2
(𝑥

2
)

+

𝑃

∗2

2

2

+

𝑔̇

2
(𝑥

2
) 𝑧

2

2

2𝑔

2

2
(𝑥

2
)

+

̃

𝑊

𝑇

2
Γ

−1

2

̇

̂

𝑊

2

=

̇

𝑉

1
+ 𝑧

2
(𝑧

3
+ 𝛼

2
+

𝑓

2
(𝑥

2
) − 𝛼̇

1

𝑔

2
(𝑥

2
)

+

𝑧

2
𝜌

2

2

2𝑔

2

2
(𝑥

2
)

)

+

𝑃

∗2

2

2

+

𝑔̇

2
(𝑥

2
) 𝑧

2

2

2𝑔

2

2
(𝑥

2
)

+

̃

𝑊

𝑇

2
Γ

−1

2

̇

̂

𝑊

2
.

(21)
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There is an ideal feedback control law:

𝛼

∗

2
= −𝑧

1
− 𝑐

2
𝑧

2
− [

𝑓

2
(𝑥

2
) − 𝛼̇

1

𝑔

2
(𝑥

2
)

+

𝑧

2
𝜌

2

2

2𝑔

2

2
(𝑥

2
)

] , (22)

where 𝑐
2
> 0 is a designed controller parameter.

Because of the unknown smooth functions 𝑓
2
(𝑥

2
) and

𝑔

2
(𝑥

2
), we cannot actually get the ideal feedback control law

𝛼

∗

2
; from (22) we can see that the unknown part is a smooth

function of 𝑥
2
and 𝛼̇

1
; let

ℎ

2
(𝑍

2
) ≜

𝑓

2
(𝑥

2
) − 𝛼̇

1

𝑔

2
(𝑥

2
)

+

𝑧

2
𝜌

2

2

2𝑔

2

2
(𝑥

2
)

, (23)

where 𝑍
2
≜ [𝑥

𝑇

2
, (𝜕𝛼

1
/𝜕𝑥

1
), 𝜙

1
]

𝑇
⊂ 𝑅

4. RBF neural network
𝑊

𝑇

2
𝑆

2
(𝑍

2
) is used to approximate the unknown function

ℎ

2
(𝑍

2
), and 𝛼∗

2
can be expressed as

𝛼

∗

2
= −𝑧

1
− 𝑐

2
𝑧

2
−𝑊

∗𝑇

2
𝑆

2
(𝑍

2
) − 𝑒

2
, (24)

where𝑊∗
2
is expressed as the ideal constant weight vector and

|𝑒

2
| ≤ 𝑒

∗

2
is the estimated error and meets 𝑒∗

2
> 0.

Because 𝑊∗
2

is unknown, select the following virtual
control law:

𝛼

2
= −𝑧

1
− 𝑐

2
𝑧

2
−

̂

𝑊

𝑇

2
𝑆

2
(𝑍

2
) ,

(25)

where ̂𝑊
2
is the estimated value of𝑊∗

2
; then

̇

𝑉

2
≤

̇

𝑉

1
− 𝑧

1
𝑧

2
+ 𝑧

2
𝑧

3
− 𝑐

2
𝑧

2

2
+

𝑔̇

2
(𝑥

2
) 𝑧

2

2

2𝑔

2

2
(𝑥

2
)

+ 𝑧

2
𝑒

2

+

𝑃

∗2

2

2

−

̃

𝑊

𝑇

2
𝑆

2
𝑧

2
+

̃

𝑊

𝑇

2
Γ

−1

2

̇

̂

𝑊

2
,

(26)

where ̃𝑊
2
=

̂

𝑊

2
−𝑊

∗

2
.

Adaptive law can be chosen as

̇

̂

𝑊

2
=

̇

̃

𝑊

2
= Γ

2
[𝑆

2
(𝑍

2
) 𝑧

2
− 𝜎

2
̂

𝑊

2
] ,

(27)

where 𝜎
2
> 0; then

̇

𝑉

2
≤

̇

𝑉

1
− 𝑧

1
𝑧

2
+ 𝑧

2
𝑧

3
− 𝑐

2
𝑧

2

2
+

𝑔̇

2
(𝑥

2
) 𝑧

2

2

2𝑔

2

2
(𝑥

2
)

+ 𝑧

2
𝑒

2

+

𝑃

∗2

2

2

− 𝜎

2
̃

𝑊

𝑇

2
̂

𝑊

2
.

(28)

Let 𝑐
2
= 𝑐

20
+ 𝑐

21
, 𝑐
20
, 𝑐

21
> 0; then the upper equation

becomes

̇

𝑉

2
≤

̇

𝑉

1
− 𝑧

1
𝑧

2
+ 𝑧

2
𝑧

3
− (𝑐

20
+

𝑔̇

2
(𝑥

2
)

2𝑔

2

2
(𝑥

2
)

) 𝑧

2

2
− 𝑐

21
𝑧

2

2

+ 𝑧

2
𝑒

2
+

𝑃

∗2

2

2

− 𝜎

2
̃

𝑊

𝑇

2
̂

𝑊

2
.

(29)

According to the complete square formula,

−𝜎

2
̃

𝑊

𝑇

2
̂

𝑊

2
= −𝜎

2
̃

𝑊

𝑇

2
(

̃

𝑊

2
+𝑊

∗

2
)

≤ −𝜎

2

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑊

2

󵄩

󵄩

󵄩

󵄩

󵄩

2

+ 𝜎

2

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑊

2

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑊

∗

2

󵄩

󵄩

󵄩

󵄩

≤ −

𝜎

2

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑊

2

󵄩

󵄩

󵄩

󵄩

󵄩

2

2

+

𝜎

2

󵄩

󵄩

󵄩

󵄩

𝑊

∗

2

󵄩

󵄩

󵄩

󵄩

2

2

,

−𝑐

21
𝑧

2

2
+ 𝑧

2
𝑒

2
≤ −𝑐

21
𝑧

2

2
+ 𝑧

2

󵄨

󵄨

󵄨

󵄨

𝑒

2

󵄨

󵄨

󵄨

󵄨

≤

𝑒

2

2

4𝑐

21

≤

𝑒

∗2

2

4𝑐

21

.

(30)

Because −(𝑐
20
+(𝑔̇

2
/2𝑔

2

2
))𝑧

2

2
≤ −(𝑐

20
−(𝑔

2𝑑
/2𝑔

2

2𝑚
))𝑧

2

2
, then

we can make (𝑐∗
20
≜ 𝑐

20
− (𝑔

2𝑑
/2𝑔

2

2𝑚
)) > 0 by selecting the

proper 𝑐
20
; then

̇

𝑉

2
≤

̇

𝑉

1
− 𝑧

1
𝑧

2
+ 𝑧

2
𝑧

3
− 𝑐

∗

20
𝑧

2

2
−

𝜎

2

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑊

2

󵄩

󵄩

󵄩

󵄩

󵄩

2

2

+

𝜎

2

󵄩

󵄩

󵄩

󵄩

𝑊

∗

2

󵄩

󵄩

󵄩

󵄩

2

2

+

𝑒

∗2

2

4𝑐

21

+

𝑃

∗2

2

2

≤ 𝑧

2
𝑧

3
−

2

∑

𝑘=1

𝑐

∗

𝑘0
𝑧

2

𝑘
−

2

∑

𝑘=1

𝜎

𝑘

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑊

𝑘

󵄩

󵄩

󵄩

󵄩

󵄩

2

2

+

2

∑

𝑘=1

𝜎

𝑘

󵄩

󵄩

󵄩

󵄩

𝑊

∗

𝑘

󵄩

󵄩

󵄩

󵄩

2

2

+

2

∑

𝑘=1

𝑒

∗2

𝑘

4𝑐

𝑘1

.

(31)

The cross coupling 𝑧
2
𝑧

3
in (31) will be eliminated in the

next step.

Step 𝑖 (3 ≤ 𝑖 ≤ 𝑛 − 1). The derivative of 𝑧
𝑖
= 𝑥

𝑖
− 𝛼

𝑖−1
can be

calculated as

𝑧̇

𝑖
= 𝑓

𝑖
(𝑥

𝑖
) + 𝑔

𝑖
(𝑥

𝑖
) 𝑥

𝑖+1
− 𝛼̇

𝑖−1
, (32)

where

𝛼̇

𝑖−1
=

𝑖−1

∑

𝑘=1

𝜕𝛼

𝑖−1

𝜕𝑥

𝑘

(𝑔

𝑘
(𝑥

𝑘
) 𝑥

𝑘+1
+ 𝑓

𝑘
(𝑥

𝑘
)) + 𝜑

𝑖−1
,

𝜙

𝑖−1
=

𝑖−1

∑

𝑘=1

(

𝜕𝛼

𝑖−1

𝜕𝑥

𝑑

) 𝑥̇

𝑑

+

𝑖−1

∑

𝑘=1

(

𝜕𝛼

𝑖−1

𝜕

̂

𝑊

𝑘

) [Γ

𝑘
(𝑆

𝑘
(𝑍

𝑘
) 𝑧

𝑘
− 𝜎

𝑘
̂

𝑊

𝑘
)] .

(33)

Consider the following Lyapunov function:

𝑉

𝑖
= 𝑉

𝑖−1
+

1

2𝑔

𝑖
(𝑥

𝑖
)

𝑧

2

𝑖
+

1

2

̃

𝑊

𝑇

𝑖
Γ

−1

𝑖
̃

𝑊

𝑖
, (34)

where Γ
𝑖
= Γ

𝑇

𝑖
> 0 is an adaptive gain matrix.
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Then the derivation of 𝑉
𝑖
can be calculated as

̇

𝑉

𝑖
=

̇

𝑉

𝑖−1
+

𝑧

𝑖
𝑧̇

𝑖

𝑔

𝑖
(𝑥

𝑖
)

+

𝑔̇

𝑖
(𝑥

𝑖
) 𝑧

2

𝑖

2𝑔

2

𝑖
(𝑥

𝑖
)

+

̃

𝑊

𝑇

𝑖
Γ

−1

𝑖

̇

̂

𝑊

𝑖

=

̇

𝑉

𝑖−1
+

𝑧

𝑖

𝑔

𝑖
(𝑥

𝑖
)

(𝑓

𝑖
(𝑥

𝑖
) + 𝑔

𝑖
(𝑥

𝑖
) 𝑥

𝑖+1
+ 𝑑

𝑖
− 𝛼̇

𝑖−1
)

+

𝑔̇

𝑖
(𝑥

𝑖
) 𝑧

2

𝑖

2𝑔

2

𝑖
(𝑥

𝑖
)

+

̃

𝑊

𝑇

𝑖
Γ

−1

𝑖

̇

̂

𝑊

𝑖

=

̇

𝑉

𝑖−1
+ 𝑧

𝑖
(𝑧

𝑖+1
+ 𝛼

𝑖
+

𝑓

𝑖
(𝑥

𝑖
) − 𝛼̇

𝑖−1

𝑔

𝑖
(𝑥

𝑖
)

) +

𝑧

𝑖
𝑑

𝑖

𝑔

𝑖
(𝑥

𝑖
)

+

𝑔̇

𝑖
(𝑥

𝑖
) 𝑧

2

𝑖

2𝑔

2

𝑖
(𝑥

𝑖
)

+

̃

𝑊

𝑇

𝑖
Γ

−1

𝑖

̇

̂

𝑊

𝑖
.

(35)

According to Assumption 1 we can get

̇

𝑉

𝑖
≤

̇

𝑉

𝑖−1
+ 𝑧

𝑖
(𝑧

𝑖+1
+ 𝛼

𝑖
+

𝑓

𝑖
(𝑥

𝑖
) − 𝛼̇

𝑖−1

𝑔

𝑖
(𝑥

𝑖
)

)

+

𝑧

2

𝑖
𝜌

2

𝑖

2𝑔

2

𝑖
(𝑥

𝑖
)

+

𝑃

∗2

𝑖

2

+

𝑔̇

𝑖
(𝑥

𝑖
) 𝑧

2

𝑖

2𝑔

2

𝑖
(𝑥

𝑖
)

+

̃

𝑊

𝑇

𝑖
Γ

−1

𝑖

̇

̂

𝑊

𝑖

=

̇

𝑉

𝑖−1

+ 𝑧

𝑖
(𝑧

𝑖+1
+ 𝛼

𝑖
+

𝑓

𝑖
(𝑥

𝑖
) − 𝛼̇

𝑖−1

𝑔

𝑖
(𝑥

𝑖
)

+

𝑧

2

𝑖
𝜌

2

𝑖

2𝑔

2

𝑖
(𝑥

𝑖
)

)

+

𝑃

∗2

𝑖

2

+

𝑔̇

𝑖
(𝑥

𝑖
) 𝑧

2

𝑖

2𝑔

2

𝑖
(𝑥

𝑖
)

+

̃

𝑊

𝑇

𝑖
Γ

−1

𝑖

̇

̂

𝑊

𝑖
.

(36)

There is an ideal feedback control law as

𝛼

∗

𝑖
= −𝑧

𝑖−1
− 𝑐

𝑖
𝑧

𝑖
− [

𝑓

𝑖
(𝑥

𝑖
) − 𝛼̇

𝑖−1

𝑔

𝑖
(𝑥

𝑖
)

+

𝑧

𝑖
𝜌

2

𝑖

2𝑔

2

𝑖
(𝑥

𝑖
)

] , (37)

where 𝑐
𝑖
> 0 is designed controller parameter.

Because of the unknown smooth functions 𝑓
𝑖
(𝑥

𝑖
) and

𝑔

𝑖
(𝑥

𝑖
), we cannot actually get the ideal feedback control law

𝛼

∗

𝑖
; from (37) we can see that the unknown part is a smooth

function of 𝑥
𝑖
and 𝛼̇

𝑖−1
, and let

ℎ

𝑖
(𝑍

𝑖
) ≜

𝑓

𝑖
(𝑥

𝑖
) − 𝛼̇

𝑖−1

𝑔

𝑖
(𝑥

𝑖
)

+

𝑧

𝑖
𝜌

2

𝑖

2𝑔

2

𝑖
(𝑥

𝑖
)

, (38)

where

𝑍

𝑖
≜ [𝑥

𝑇

𝑖
,

𝜕𝛼

𝑖−1

𝜕𝑥

1

, . . . ,

𝜕𝛼

𝑖−1

𝜕𝑥

𝑖−1

, 𝜑

𝑖−1
]

𝑇

⊂ 𝑅

2𝑖
.

(39)

By introducing the direct variable (𝜕𝛼

𝑖−1
/𝜕𝑥

1
), . . .,

(𝜕𝛼

𝑖−1
/𝜕𝑥

𝑖−1
), 𝜑
𝑖−1

, we can make the number of neural
networks minimized. RBF neural network𝑊𝑇

𝑖
𝑆

𝑖
(𝑍

𝑖
) is used

to approximate the unknown function ℎ
𝑖
(𝑍

𝑖
), and 𝛼∗

𝑖
can be

expressed as

𝛼

∗

𝑖
= −𝑧

𝑖−1
− 𝑐

𝑖
𝑧

𝑖
−𝑊

∗𝑇

𝑖
𝑆

𝑖
(𝑍

𝑖
) − 𝑒

𝑖
, (40)

where |𝑒
𝑖
| ≤ 𝑒

∗

𝑖
is estimated error and meets 𝑒∗

𝑖
> 0.

Because 𝑊∗
𝑖

is unknown, select the following virtual
control law:

𝛼

𝑖
= −𝑧

𝑖−1
− 𝑐

𝑖
𝑧

𝑖
−

̂

𝑊

𝑇

𝑖
𝑆

𝑖
(𝑍

𝑖
) ,

(41)

where𝑊∗
𝑖
is the estimated value of ̂𝑊

𝑖
; then

̇

𝑉

𝑖
≤

̇

𝑉

𝑖−1
− 𝑧

𝑖−1
𝑧

𝑖
+ 𝑧

𝑖
𝑧

𝑖+1
− 𝑐

𝑖
𝑧

2

𝑖
+

𝑔̇

𝑖
(𝑥

𝑖
) 𝑧

2

𝑖

2𝑔

2

𝑖
(𝑥

𝑖
)

+ 𝑧

𝑖
𝑒

𝑖

+

𝑃

∗2

𝑖

2

−

̃

𝑊

𝑇

𝑖
𝑆

𝑖
𝑧

𝑖
+

̃

𝑊

𝑇

𝑖
Γ

−1

𝑖

̇

̂

𝑊

𝑖
,

(42)

where ̃𝑊
𝑖
=

̂

𝑊

𝑖
−𝑊

∗

𝑖
.

The following adaptive law can be selected as

̇

̂

𝑊

𝑖
=

̇

̃

𝑊

𝑖
= Γ

𝑖
[𝑆

𝑖
(𝑍

𝑖
) 𝑧

𝑖
− 𝜎

𝑖
̂

𝑊

𝑖
] ,

(43)

where 𝜎
𝑖
> 0; then

̇

𝑉

𝑖
≤

̇

𝑉

𝑖−1
− 𝑧

𝑖−1
𝑧

𝑖
+ 𝑧

𝑖
𝑧

𝑖+1
− 𝑐

𝑖
𝑧

2

𝑖
+

𝑔̇

𝑖
(𝑥

𝑖
) 𝑧

2

𝑖

2𝑔

2

𝑖
(𝑥

𝑖
)

+ 𝑧

𝑖
𝑒

𝑖

+

𝑃

∗2

𝑖

2

− 𝜎

𝑖
̃

𝑊

𝑇

𝑖
̂

𝑊

𝑖
.

(44)

Let 𝑐
𝑖
= 𝑐

𝑖0
+ 𝑐

𝑖1
, 𝑐
𝑖0
, 𝑐

𝑖1
> 0; then (44) can be rewritten as

̇

𝑉

𝑖
≤

̇

𝑉

𝑖−1
− 𝑧

𝑖−1
𝑧

𝑖
+ 𝑧

𝑖
𝑧

𝑖+1
− (𝑐

𝑖0
+

𝑔̇

𝑖
(𝑥

𝑖
)

2𝑔

2

𝑖
(𝑥

𝑖
)

) 𝑧

2

𝑖

− 𝑐

𝑖1
𝑧

2

𝑖
+ 𝑧

𝑖
𝑒

𝑖
+

𝑃

∗2

𝑖

2

− 𝜎

𝑖
̃

𝑊

𝑇

𝑖
̂

𝑊

𝑖
.

(45)

According to the complete square formula,

−𝜎

𝑖
̃

𝑊

𝑇

𝑖
̂

𝑊

𝑖
= −𝜎

𝑖
̃

𝑊

𝑇

𝑖
(

̃

𝑊

𝑖
+𝑊

∗

𝑖
)

≤ −𝜎

𝑖

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑊

𝑖

󵄩

󵄩

󵄩

󵄩

󵄩

2

+ 𝜎

𝑖

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑊

𝑖

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑊

∗

𝑖

󵄩

󵄩

󵄩

󵄩

≤ −

𝜎

𝑖

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑊

𝑖

󵄩

󵄩

󵄩

󵄩

󵄩

2

2

+

𝜎

𝑖

󵄩

󵄩

󵄩

󵄩

𝑊

∗

𝑖

󵄩

󵄩

󵄩

󵄩

2

2

,

−𝑐

𝑖1
𝑧

2

𝑖
+ 𝑧

𝑖
𝑒

𝑖
≤ −𝑐

𝑖1
𝑧

2

𝑖
+ 𝑧

𝑖

󵄨

󵄨

󵄨

󵄨

𝑒

𝑖

󵄨

󵄨

󵄨

󵄨

≤

𝑒

2

𝑖

4𝑐

𝑖1

≤

𝑒

∗2

𝑖

4𝑐

𝑖1

.

(46)
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Because −(𝑐
𝑖0
+ (𝑔̇

𝑖
/2𝑔

2

𝑖
))𝑧

2

𝑖
≤ −(𝑐

𝑖0
− (𝑔

𝑖𝑑
/2𝑔

2

𝑖𝑚
))𝑧

2

𝑖
, then

we can make (𝑐∗
𝑖0
≜ 𝑐

𝑖0
− (𝑔

𝑖𝑑
/2𝑔

2

𝑖𝑚
)) > 0 by selecting the

proper 𝑐
𝑖0
; then

̇

𝑉

𝑖
≤

̇

𝑉

𝑖−1
− 𝑧

𝑖−1
𝑧

𝑖
+ 𝑧

𝑖
𝑧

𝑖+1
− 𝑐

∗

𝑖0
𝑧

2

𝑖
−

𝜎

𝑖

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑊

𝑖

󵄩

󵄩

󵄩

󵄩

󵄩

2

2

+

𝜎

𝑖

󵄩

󵄩

󵄩

󵄩

𝑊

∗

𝑖

󵄩

󵄩

󵄩

󵄩

2

2

+

𝑒

∗2

𝑖

4𝑐

𝑖1

+

𝑃

∗2

𝑖

2

≤ 𝑧

𝑖
𝑧

𝑖+1
−

𝑖

∑

𝑘=1

𝑐

∗

𝑘0
𝑧

2

𝑘
−

𝑖

∑

𝑘=1

𝜎

𝑘

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑊

𝑘

󵄩

󵄩

󵄩

󵄩

󵄩

2

2

+

𝑖

∑

𝑘=1

𝜎

𝑘

󵄩

󵄩

󵄩

󵄩

𝑊

∗

𝑘

󵄩

󵄩

󵄩

󵄩

2

2

+

𝑖

∑

𝑘=1

𝑒

∗2

𝑘

4𝑐

𝑘1

+

𝑖

∑

𝑘=1

𝑃

∗2

𝑘

2

.

(47)

The cross coupling 𝑧
𝑖
𝑧

𝑖+1
in (47) will be eliminated in the

next step.

Step 𝑛. The derivative of 𝑧
𝑛
= 𝑥

𝑛
− 𝛼

𝑛−1
can be calculated as

𝑧̇

𝑛
= 𝑓

𝑛
(𝑥

𝑛
) + 𝑔

𝑛
(𝑥

𝑛−1
) 𝑢 − 𝛼̇

𝑛−1
, (48)

where

𝛼̇

𝑛−1
=

𝑛−1

∑

𝑘=1

𝜕𝛼

𝑛−1

𝜕𝑥

𝑘

(𝑔

𝑘
(𝑥

𝑘
) 𝑥

𝑘+1
+ 𝑓

𝑘
(𝑥

𝑘
)) + 𝜙

𝑛−1
, (49)

where

𝜙

𝑛−1
=

𝑛−1

∑

𝑘=1

(

𝜕𝛼

𝑛−1

𝜕𝑥

𝑑

) 𝑥̇

𝑑

+

𝑛−1

∑

𝑘=1

(

𝜕𝛼

𝑛−1

𝜕

̂

𝑊

𝑘

) [Γ

𝑘
(𝑆

𝑘
(𝑍

𝑘
) 𝑧

𝑘
− 𝜎

𝑘
̂

𝑊

𝑘
)] .

(50)

Consider the following Lyapunov function:

𝑉

𝑛
= 𝑉

𝑛−1
+

1

2𝑔

𝑛
(𝑥

𝑛
)

𝑧

2

𝑛
+

1

2

̃

𝑊

𝑇

𝑛
Γ

−1

𝑛
̃

𝑊

𝑛
, (51)

where Γ
𝑛
= Γ

𝑇

𝑛
> 0 is an adaptive gain matrix. Then the

derivation of 𝑉
𝑛
can be calculated as

̇

𝑉

𝑛
=

̇

𝑉

𝑛−1
+

𝑧

𝑛
𝑧̇

𝑛

𝑔

𝑖
(𝑥

𝑖
)

+

𝑔̇

𝑛
(𝑥

𝑛
) 𝑧

2

𝑛

2𝑔

2

𝑛
(𝑥

𝑛
)

+

̃

𝑊

𝑇

𝑛
Γ

−1

𝑛

̇

̂

𝑊

𝑛

=

̇

𝑉

𝑛−1

+

𝑧

𝑛

𝑔

𝑛
(𝑥

𝑛
)

(𝑓

𝑛
(𝑥

𝑛
) + 𝑔

𝑛
(𝑥

𝑛
) 𝑢 + 𝑑

𝑛
− 𝛼̇

𝑛−1
)

+

𝑔̇

𝑛
(𝑥

𝑛
) 𝑧

2

𝑛

2𝑔

2

𝑛
(𝑥

𝑛
)

+

̃

𝑊

𝑇

𝑛
Γ

−1

𝑛

̇

̂

𝑊

𝑛

=

̇

𝑉

𝑛−1
+ 𝑧

𝑛
(𝑧

𝑛+1
+ 𝑢 +

𝑓

𝑛
(𝑥

𝑛
) − 𝛼̇

𝑛−1

𝑔

𝑛
(𝑥

𝑛
)

)

+

𝑧

𝑛
𝑑

𝑛

𝑔

𝑛
(𝑥

𝑛
)

+

𝑔̇

𝑛
(𝑥

𝑛
) 𝑧

2

𝑛

2𝑔

2

𝑛
(𝑥

𝑛
)

+

̃

𝑊

𝑇

𝑛
Γ

−1

𝑛

̇

̂

𝑊

𝑛
.

(52)

According to Assumption 1 we can get

̇

𝑉

𝑛
≤

̇

𝑉

𝑛−1
+ 𝑧

𝑛
(𝑧

𝑛+1
+ 𝑢 +

𝑓

𝑖
(𝑥

𝑖
) − 𝛼̇

𝑛−1

𝑔

𝑖
(𝑥

𝑖
)

)

+

𝑧

2

𝑛
𝜌

2

𝑛

2𝑔

2

𝑛
(𝑥

𝑛
)

+

𝑃

∗2

𝑛

2

+

𝑔̇

𝑛
(𝑥

𝑛
) 𝑧

2

𝑛

2𝑔

2

𝑛
(𝑥

𝑛
)

+

̃

𝑊

𝑇

𝑛
Γ

−1

𝑛

̇

̂

𝑊

𝑛

=

̇

𝑉

𝑛−1

+ 𝑧

𝑛
(𝑧

𝑛+1
+ 𝑢 +

𝑓

𝑛
(𝑥

𝑛
) − 𝛼̇

𝑛−1

𝑔

𝑛
(𝑥

𝑛
)

+

𝑧

2

𝑛
𝜌

2

𝑛

2𝑔

2

𝑛
(𝑥

𝑛
)

)

+

𝑃

∗2

𝑛

2

+

𝑔̇

𝑛
(𝑥

𝑛
) 𝑧

2

𝑛

2𝑔

2

𝑛
(𝑥

𝑛
)

+

̃

𝑊

𝑇

𝑛
Γ

−1

𝑛

̇

̂

𝑊

𝑛
.

(53)

There is an ideal feedback control law as

𝑢

∗
= −𝑧

𝑖−1
− 𝑐

𝑖
𝑧

𝑖
− [

𝑓

𝑖
(𝑥

𝑖
) − 𝛼̇

𝑖−1

𝑔

𝑖
(𝑥

𝑖
)

+

𝑧

𝑖
𝜌

2

𝑖

2𝑔

2

𝑖
(𝑥

𝑖
)

] , (54)

where 𝑐
𝑛
> 0 is designed controller parameter.

Because of the unknown smooth functions 𝑓
𝑛
(𝑥

𝑛
) and

𝑔

𝑖
(𝑥

𝑖
), we cannot actually get the ideal feedback control law

𝑢

∗; from (54) we can see the unknown part is a smooth
function of 𝑥

𝑛
and 𝛼̇

𝑛−1
, and let

ℎ

𝑛
(𝑍

𝑖
) ≜

𝑓

𝑛
(𝑥

𝑛
) − 𝛼̇

𝑛−1

𝑔

𝑛
(𝑥

𝑛
)

+

𝑧

𝑛
𝜌

2

𝑛

2𝑔

2

𝑛
(𝑥

𝑛
)

, (55)

where 𝑍
𝑛
≜ [𝑥

𝑇

𝑛
, 𝜕𝛼

𝑛−1
/𝜕𝑥

1
, . . . , 𝜕𝛼

𝑛−1
/𝜕𝑥

𝑛−1
, 𝜙

𝑛−1
]

𝑇
⊂ 𝑅

2𝑛.
RBF neural network𝑊𝑇

𝑛
𝑆

𝑛
(𝑍

𝑛
) is used to approximate the

unknown function ℎ
𝑛
(𝑍

𝑛
), and 𝑢∗ can be expressed as

𝑢

∗
= −𝑧

𝑛−1
− 𝑐

𝑛
𝑧

𝑛
−𝑊

∗𝑇

𝑛
𝑆

𝑛
(𝑍

𝑛
) − 𝑒

𝑛
, (56)

where |𝑒
𝑛
| ≤ 𝑒

∗

𝑛
is estimated error and meets 𝑒∗

𝑛
> 0.

Because 𝑊∗
𝑛

is unknown, select the following virtual
control law:

𝑢 = −𝑧

𝑛−1
− 𝑐

𝑛
𝑧

𝑛
−

̂

𝑊

𝑇

𝑛
𝑆

𝑛
(𝑍

𝑛
) ,

(57)

where ̂𝑊
𝑖
is the estimated value of𝑊∗

𝑖
; then

̇

𝑉

𝑛
≤

̇

𝑉

𝑛−1
− 𝑧

𝑛−1
𝑧

𝑛
+ 𝑧

𝑛
𝑧

𝑛+1
− 𝑐

𝑛
𝑧

2

𝑛
+

𝑔̇

𝑛
(𝑥

𝑛
) 𝑧

2

𝑛

2𝑔

2

𝑛
(𝑥

𝑛
)

+ 𝑧

𝑛
𝑒

𝑛
+

𝑃

∗2

𝑛

2

−

̃

𝑊

𝑇

𝑛
𝑆

𝑛
𝑧

𝑛
+

̃

𝑊

𝑇

𝑛
Γ

−1

𝑛

̇

̂

𝑊

𝑛
,

(58)

where ̃𝑊
𝑛
=

̂

𝑊

𝑛
−𝑊

∗

𝑛
.

The following adaptive law can be selected as

̇

̂

𝑊

𝑛
=

̇

̃

𝑊

𝑛
= Γ

𝑛
[𝑆

𝑛
(𝑍

𝑛
) 𝑧

𝑛
− 𝜎

𝑛
̂

𝑊

𝑛
] ,

(59)

where 𝜎
𝑛
> 0; then

̇

𝑉

𝑛
≤

̇

𝑉

𝑛−1
− 𝑧

𝑛−1
𝑧

𝑛
+ 𝑧

𝑛
𝑧

𝑛+1
− 𝑐

𝑛
𝑧

2

𝑛
+

𝑔̇

𝑛
(𝑥

𝑛
) 𝑧

2

𝑛

2𝑔

2

𝑛
(𝑥

𝑛
)

+ 𝑧

𝑛
𝑒

𝑛
+

𝑃

∗2

𝑛

2

− 𝜎

𝑛
̃

𝑊

𝑇

𝑛
̂

𝑊

𝑛
.

(60)
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Let 𝑐
𝑛
= 𝑐

𝑛0
+ 𝑐

𝑛1
, 𝑐
𝑛0
, 𝑐

𝑛1
> 0; (60) can be rewritten as

̇

𝑉

𝑛
≤

̇

𝑉

𝑛−1
− 𝑧

𝑛−1
𝑧

𝑛
+ 𝑧

𝑛
𝑧

𝑛+1
− (𝑐

𝑛0
+

𝑔̇

𝑛
(𝑥

𝑛
)

2𝑔

2

𝑛
(𝑥

𝑛
)

) 𝑧

2

𝑛

− 𝑐

𝑛1
𝑧

2

𝑛
+ 𝑧

𝑛
𝑒

𝑛
+

𝑃

∗2

𝑛

2

− 𝜎

𝑛
̃

𝑊

𝑇

𝑛
̂

𝑊

𝑛
.

(61)

According to the complete square formula,

−𝜎

𝑛
̃

𝑊

𝑇

𝑛
̂

𝑊

𝑛
= −𝜎

𝑛
̃

𝑊

𝑇

𝑛
(

̃

𝑊

𝑛
+𝑊

∗

𝑛
)

≤ −𝜎

𝑛

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑊

𝑛

󵄩

󵄩

󵄩

󵄩

󵄩

2

+ 𝜎

𝑛

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑊

𝑛

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑊

∗

𝑛

󵄩

󵄩

󵄩

󵄩

≤ −

𝜎

𝑛

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑊

𝑛

󵄩

󵄩

󵄩

󵄩

󵄩

2

2

+

𝜎

𝑛

󵄩

󵄩

󵄩

󵄩

𝑊

∗

𝑛

󵄩

󵄩

󵄩

󵄩

2

2

,

−𝑐

𝑛1
𝑧

2

𝑛
+ 𝑧

𝑛
𝑒

𝑛
≤ −𝑐

𝑛1
𝑧

2

𝑛
+ 𝑧

𝑛

󵄨

󵄨

󵄨

󵄨

𝑒

𝑛

󵄨

󵄨

󵄨

󵄨

≤

𝑒

2

𝑛

4𝑐

𝑛1

≤

𝑒

∗2

𝑛

4𝑐

𝑛1

.

(62)

Because−(𝑐
𝑛0
+(𝑔̇

𝑛
/2𝑔

2

𝑛
))𝑧

2

𝑛
≤ −(𝑐

𝑛0
−(𝑔

𝑛𝑑
/2𝑔

2

𝑛𝑚
))𝑧

2

𝑛
, then

we can make (𝑐∗
𝑛0
≜ 𝑐

𝑛0
− (𝑔

𝑛𝑑
/2𝑔

2

𝑛𝑚
)) > 0 by selecting the

proper 𝑐
𝑛0
; then

̇

𝑉

𝑛
≤ −

𝑛

∑

𝑘=1

𝑐

∗

𝑘0
𝑧

2

𝑘
−

𝑛

∑

𝑘=1

𝜎

𝑘

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑊

𝑘

󵄩

󵄩

󵄩

󵄩

󵄩

2

2

+

𝑛

∑

𝑘=1

𝜎

𝑘

󵄩

󵄩

󵄩

󵄩

𝑊

∗

𝑘

󵄩

󵄩

󵄩

󵄩

2

2

+

𝑛

∑

𝑘=1

𝑒

∗2

𝑘

4𝑐

𝑘1

+

𝑛

∑

𝑘=1

𝑃

∗2

𝑘

2

.

(63)

Let 𝛿 ≜ ∑

𝑛

𝑘=1
(𝜎

𝑘
‖𝑊

∗

𝑘
‖

2
/2) + ∑

𝑛

𝑘=1
(𝑒

∗2

𝑘
/4𝑐

𝑘1
) +

∑

𝑛

𝑘=1
(𝑝

∗2

𝑘
/2), 𝑐∗
𝑘0
≥ (𝛾/2𝑔

𝑘𝑚
), 𝑐
𝑘0
> (𝛾/2𝑔

𝑘𝑚
) + (𝑔

𝑘𝑑
/2𝑔

2

𝑘𝑚
),

𝑘 = 1, 2, . . . , 𝑛, where 𝛾 > 0, 𝜎
𝑘
≥ 𝛾𝜆max{Γ

−1

𝑘
}, 𝑘 = 1, 2, . . . , 𝑛;

then

̇

𝑉

𝑛
≤ −

𝑛

∑

𝑘=1

𝑐

∗

𝑘0
𝑧

2

𝑘
−

𝑛

∑

𝑘=1

𝜎

𝑘

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑊

𝑘

󵄩

󵄩

󵄩

󵄩

󵄩

2

2

+ 𝛿

≤ −

𝑛

∑

𝑘=1

𝛾

2𝑔

𝑘𝑚

𝑧

2

𝑘
−

𝑛

∑

𝑘=1

𝛾

̃

𝑊

𝑇

𝑘
Γ

−1

𝑘
̃

𝑊

𝑘

2𝑔

𝑘𝑚

+ 𝛿

≤ −𝛾

[

[

𝑛

∑

𝑘=1

1

2𝑔

𝑘

𝑧

2

𝑘
+

𝑛

∑

𝑘=1

̃

𝑊

𝑇

𝑘
Γ

−1

𝑘
̃

𝑊

𝑘

2

]

]

+ 𝛿

≤ −𝛾𝑉

𝑛
+ 𝛿.

(64)

The stability and control performance of the closed-loop
adaptive system are demonstrated by the following theorem.

Theorem 2. In the initial conditions, by formula (1), reference
model (2), control law (57), and neural network weight update
rate in (12), (27), (43), and (59), supposing that there is a large
enough set of closed sets Ω

𝑖
∈ 𝑅

2𝑖, 𝑖 = 1, 2, . . . , 𝑛, for any given
moment 𝑡 ≥ 0, making 𝑍

𝑖
∈ Ω

𝑖
, the following conclusions can

be obtained as follows:

(1) The signal of the whole closed-loop system is bounded,
and the state variable 𝑥

𝑛
and the neural network

estimation errors ̂𝑊𝑇
1
, . . . ,

̂

𝑊

𝑇

𝑛
will eventually converge

to the closed set as follows:

Ω

𝑠1
≜ {𝑥

𝑛
,

̂

𝑊

1
, . . . ,

̂

𝑊

𝑛
| 𝑉 <

𝛿

𝛾

, 𝑥

𝑑
∈ Ω

𝑑
} . (65)

(2) By choosing the proper control parameters, the output
tracking error 𝑦(𝑡) −𝑦

𝑑1
(𝑡) is close to a small neighbor-

hood of zero [21].

3. Adaptive Robust Neural Network Control
for Ship Course

3.1. Problem Formulation. This section introduces a sim-
plified dynamic model of an underactuated surface vehicle
with only one control input 𝛿 for heading control. A surface
ship usually has three degrees of freedom for path following
control in horizontal plane. Assuming that the vessel has
three planes of symmetry, for most underactuated vessels
have port/starboard symmetry, it can be neglected to simplify
the vessel model for controller design. The detailed model
which considers the environment disturbances can be set as
follows:

𝑦̇ = 𝑈 sin𝜓,

̇
𝜓 = 𝑟,

̇𝑟 = −

1

𝑇

𝑟 −

𝛼

𝑇

𝑟

3
+

𝐾

𝑇

𝛿 + Δ,

𝑦

1
= 𝑦,

𝑦

2
= 𝜓,

(66)

where 𝑦 denotes transverse displacement in the earth inertial
coordinates; 𝑈 =

√

𝑢

2
+ V2 is resultant velocity of ship; 𝜓

is course angle; 𝑟 is yawing angular velocity; 𝐾,𝑇 represent
performance index for ship steering; 𝛼 is coefficient of
nonlinear term; 𝛿 is control rudder angle; 𝑦

1
, 𝑦

2
represent

system output.
The control objective is to design the controller 𝛿 to make

the control output 𝑦, 𝜓 achieve the setting value (𝑦
𝑑
, 𝜓

𝑑
).

Because the dimension of the system control input is less than
the degree of freedom of the system, it is an underactuated
system.

3.2. Dynamic Controller Design. Selection of coordinate
transformation is as follows:

𝑤

𝑒
= 𝜓 + arcsin(

𝑘𝑦

√

1 + (𝑘𝑦)

2

). (67)

Theoriginal system can be transformed into a single input
single output system:

𝑥̇

1
=

𝑘𝑦̇

1 + (𝑘𝑦)

2
+ 𝑥

2
,

𝑥̇

2
= −𝑎

1
𝑥

2
− 𝑎

2
𝑥

2

3
+ 𝑏𝑢 + Δ,

(68)
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where 𝑎
1
= 1/𝑇, 𝑎

2
= 𝛼/𝑇, 𝑏 = 𝐾/𝑇, 𝑥

1
= 𝑤

𝑒
, 𝑥
2
= 𝑟, 𝑢 = 𝛿,

and the output of whole system is 𝑥
1
.

For system model (67) and (68), the controller design is
carried out by using backstepping method.

Step 1. Let 𝑧
1
= 𝑥

1
, 𝑥
𝑑1
= 0; then

𝑧̇

1
=

𝑘𝑦̇

1 + (𝑘𝑦)

2
+ 𝑥

2
. (69)

For the subsystem 𝑧

1
, 𝛼∗
1
≜ 𝑥

2
is chosen as virtual control

input. Select the Lyapunov function 𝑉
𝑧1
= (1/2)𝑧

2

1
, and there

is

̇

𝑉

𝑧1
= 𝑧

1
𝑧̇

1
= (

𝑘𝑦̇

1 + (𝑘𝑦)

2
+ 𝑥

2
)𝑧

1
. (70)

Let 𝑧
2
= 𝑥

2
− 𝛼

1
; then 𝑥

2
= 𝑧

2
+ 𝛼

1
,

̇

𝑉

𝑧1
= (

𝑘𝑦̇

1 + (𝑘𝑦)

2
+ 𝑧

2
+ 𝛼

1
)𝑧

1
. (71)

Select the following virtual control law:

𝛼

∗

1
= −𝑐

1
𝑧

1
−

𝑘𝑦̇

1 + (𝑘𝑦)

2
. (72)

̇

𝑉

𝑧1
= 𝑧

1
𝑧

2
− 𝑐

1
𝑧

2

1
, because 𝑘𝑦̇/(1 + (𝑘𝑦)2) is unknown

function, ℎ
1
(𝑍

1
) = 𝑘𝑦̇/(1 + (𝑘𝑦)

2
), and we will adopt RBF

NN to estimate ℎ
1
(𝑍

1
) and get ℎ

1
(𝑍

1
) = 𝑊

∗𝑇

1
𝑆

1
(𝑍

1
) + 𝜀

1
. But

the actual use of theNN for the system is ℎ
1
(𝑍

1
) =

̂

𝑊

𝑇

1
𝑆

1
(𝑍

1
).

Actual virtual control input is 𝛼
1
= −𝑐

1
𝑧

1
−

̂

𝑊

𝑇

1
𝑆

1
(𝑍

1
); then

𝑧̇

1
=

𝑘𝑦̇

1 + (𝑘𝑦)

2
+ 𝑧

2
+ 𝛼

1

= (𝑧

2
− 𝑐

1
𝑧

1
−

̃

𝑊

1
𝑆

1
(𝑍

1
) + 𝜀

1
) ,

(73)

where ̃𝑊
1
=

̂

𝑊

1
−𝑊

∗

1
.

Select Lyapunov function as

𝑉

1
= 𝑉

𝑧1
+

1

2

̃

𝑊

𝑇

1
Γ

−1
̃

𝑊

1
; (74)

then

̇

𝑉

1
=

̇

𝑉

𝑧1
+

̃

𝑊

1
Γ

−1 ̇
̂

𝑊

1
≤ 𝑧

1
(𝑧

2
+ 𝛼

1
+ ℎ

1
(𝑍

1
))

= 𝑧

1
[𝑧

2
− 𝑐

1
𝑧

1
−

̂

𝑊

1
𝑆

1
(𝑍

1
) + 𝑊

∗

1
𝑆

1
(𝑍

1
) + 𝜀

1
]

+

̃

𝑊

1
Γ

−1 ̇
̂

𝑊

1

= 𝑧

1
[𝑧

2
− 𝑐

1
𝑧

1
−

̃

𝑊

1
𝑆

1
(𝑍

1
) + 𝜀

1
] +

̃

𝑊

1
Γ

−1 ̇
̂

𝑊

1
.

(75)

The adaptive law of neural network can be designed as

̇

̂

𝑊

1
=

̃

𝑊

1
= Γ

1
[𝑆

1
(𝑍

1
) 𝑧

1
− 𝜎

1
̂

𝑊

1
] ,

(76)

where 𝜎
1
> 0. Let 𝑐

1
= 𝑐

10
+ 𝑐

11
, where 𝑐

10
, 𝑐

11
> 0.

Furthermore,

̇

𝑉

1
= 𝑧

1
𝑧

2
− 𝑐

10
𝑧

2

1
− 𝑐

11
𝑧

2

1
+ 𝑧

1
𝜀

1
− 𝜎

1
̃

𝑊

𝑇

1
̂

𝑊

1
;

(77)

then

−𝜎

1
̃

𝑊

𝑇

1
̂

𝑊

1
= −𝜎

1
̃

𝑊

𝑇

1
(

̃

𝑊

1
+𝑊

∗

1
)

≤ −𝜎

1

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑊

1

󵄩

󵄩

󵄩

󵄩

󵄩

2

+ 𝜎

1

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑊

1

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑊

∗

1

󵄩

󵄩

󵄩

󵄩

≤ −

𝜎

1

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑊

1

󵄩

󵄩

󵄩

󵄩

󵄩

2

2

+

𝜎

1

󵄩

󵄩

󵄩

󵄩

𝑊

∗

1

󵄩

󵄩

󵄩

󵄩

2

2

(78)

because

−𝑐

11
𝑧

2

1
+ 𝑧

1
𝜀

1
≤ −𝑐

11
𝑧

2

1
+ 𝑧

1

󵄨

󵄨

󵄨

󵄨

𝜀

1

󵄨

󵄨

󵄨

󵄨

≤

𝜀

2

1

4𝑐

11

≤

𝜀

∗2

1

4𝑐

11

.
(79)

Finally we can get

̇

𝑉

1
< 𝑧

1
𝑧

2
− 𝑐

∗

10
𝑧

2

1
−

𝜎

1

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑊

1

󵄩

󵄩

󵄩

󵄩

󵄩

2

2

+

𝜎

1

󵄩

󵄩

󵄩

󵄩

𝑊

∗

1

󵄩

󵄩

󵄩

󵄩

2

2

+

𝜀

∗2

1

4𝑐

11

.

(80)

Step 2. Let 𝑧
2
= 𝑥

2
− 𝛼

1
; derivation of 𝑧

2
can be calculated as

𝑧̇

2
= 𝑓

2
(𝑥

2
) + 𝑔

2
(𝑥

2
) 𝑢 + Δ − 𝛼̇

1

= −𝑎

1
𝑥

2
− 𝑎

2
𝑥

2

3
+ 𝑏𝑢 + Δ − 𝛼̇

1
.

(81)

Because 𝑉
𝑧2
= (1/2𝑏)𝑧

2

2
, then

̇

𝑉

𝑧2
=

1

𝑏

𝑧

2
𝑧̇

2
=

1

𝑏

𝑧

2
(−𝑎

1
𝑥

2
− 𝑎

2
𝑥

2

3
+ 𝑏𝑢 + Δ − 𝛼̇

1
)

= 𝑧

2
[𝑢 +

1

𝑏

(−𝑎

1
𝑥

2
− 𝑎

2
𝑥

2

3
− 𝛼̇

1
)] +

Δ

𝑏

𝑧

2

≤ 𝑧

2
[𝑢 +

1

𝑏

(−𝑎

1
𝑥

2
− 𝑎

2
𝑥

2

3
− 𝛼̇

1
+

𝜌

2
𝑧

2

2𝑏

)]

+

𝑝

2

2

,

(82)

where Δ ≤ 𝑝 ⋅ 𝜌(𝑥), 𝑝 is unknown parameter, 𝜌(𝑥) is known
nonlinear function, and then

𝑢

∗
= −𝑧

1
− 𝑐

2
𝑧

2
−

1

𝑏

(−𝑎

1
𝑥

2
− 𝑎

2
𝑥

2

3
− 𝛼̇

1
+

𝜌

2
𝑧

2

2𝑏

) . (83)

Let

ℎ

2
(𝑍

2
) =

1

𝑏

(−𝑎

1
𝑥

2
− 𝑎

2
𝑥

2

3
− 𝛼̇

1
+

𝜌

2
𝑧

2

2𝑏

) . (84)

Equation (83) can be rewritten as

𝑢

∗
= −𝑧

1
− 𝑐

2
𝑧

2
− ℎ

2
(𝑍

2
) . (85)

In the same way we use RBF NN estimate ℎ
2
(𝑍

2
):

ℎ

2
(𝑍

2
) = 𝑊

∗

2

𝑇
𝑆

2
(𝑍

2
) + 𝜀

2
.

(86)
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The actual use of theNN for the system and controller can
be expressed as

ℎ

2
(𝑍

2
) =

̂

𝑊

𝑇

2
𝑆

2
(𝑍

2
) ,

𝑢 = 𝑧

1
− 𝑐

2
𝑧

2
−

̂

𝑊

𝑇

2
𝑆

2
(𝑍

2
) .

(87)

Select Lyapunov function as

𝑉

2
= 𝑉

1
+ 𝑉

𝑧2
+

1

2

̃

𝑊

𝑇

2
Γ

−1
̃

𝑊

2
. (88)

The derivation of 𝑉
2
can be calculated as

̇

𝑉

2
=

̇

𝑉

1
+

̇

𝑉

𝑧2
+

̃

𝑊

1
Γ

−1 ̇
̂

𝑊

1

≤ 𝑧

1
𝑧

2
− 𝑐

∗

10
𝑧

2

1
−

𝜎

1

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑊

1

󵄩

󵄩

󵄩

󵄩

󵄩

2

2

+

𝜎

1

󵄩

󵄩

󵄩

󵄩

𝑊

∗

1

󵄩

󵄩

󵄩

󵄩

2

2

+

𝜀

∗2

1

4𝑐

11

+ 𝑧

2
[−𝑧

1
− 𝑐

2
𝑧

2
−

̂

𝑊

2
𝑆

2
(𝑍

2
) + 𝑊

∗

2
𝑆

2
(𝑍

2
) + 𝜀

2
]

+

𝑝

2

2

+

̃

𝑊

1
Γ

−1 ̇
̂

𝑊

1

= −

2

∑

𝑖=1

𝑐

∗

𝑖0
𝑧

2

𝑖
−

2

∑

𝑖=1

𝜎

𝑖

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑊

𝑖

󵄩

󵄩

󵄩

󵄩

󵄩

2

2

+

2

∑

𝑖=1

𝜎

𝑖

󵄩

󵄩

󵄩

󵄩

𝑊

∗

𝑖

󵄩

󵄩

󵄩

󵄩

2

2

+

2

∑

𝑖=1

𝜀

∗2

𝑖

4𝑐

11

+

𝑝

2

2

.

(89)

Therefore, all signals in the close loop of course tracking
system are stable, and the tracking errors can be made arbi-
trarily small by selecting appropriate controller parameters.
So the final control law can be designed as

𝑢 = 𝑧

1
− 𝑐

2
𝑧

2
−

̂

𝑊

𝑇

2
𝑆

2
(𝑍

2
) .

(90)

4. Numerical Simulations and Analysis

The simulation experiment can be operated based on an
experimental ship.The nonlinearmathematicalmodel for the
ship has been presented in [22], which captures the funda-
mental characteristics of dynamics and offers good maneu-
verability in the open-loop test. To illustrate the effectiveness
of the theoretical results, the proposed control scheme is
implemented and simulated with the above nonlinear model
with tracking task.

The characteristic parameters of the ship used in the
simulation are given as 𝐾 = 0.478, 𝑇 = 216, and 𝛼 = 30.
Neural network contains 25 neurons; that is, 𝑙

1
= 25; the

center vector 𝜇
𝑙
(𝑙 = 1, 2, . . . , 𝑙

1
) is uniformly distributed in

thewidth [−2, 2]×[−2, 2]×[−2, 2]. Neural network̂𝑊𝑇
2
𝑆

2
(𝑍

2
)

contains 135 neurons; that is, 𝑙
2
= 125; the center vector

𝜇

𝑙
(𝑙 = 1, 2, . . . , 𝑙

2
) is uniformly distributed in the width

[−4, 4] × [−4, 4] × [−4, 4] × [−4, 4] × [−4, 4] × [−4, 4] ×

[−4, 0] × [−6, 6]. The controller design parameters are given
as follows which satisfy the condition mentioned in design
procedure: 𝑘 = 0.1394, 𝑐

1
= 4, 𝑐

2
= 120, Γ

1
= diag{3},

Γ

2
= diag{4}, and 𝜎

1
= 4, 𝜎

2
= 2. The initial linear and
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Figure 1: Ship tracking performance of proposed control method.

angular velocity of ship used in the simulation are given as
[𝑢, V, 𝑟]𝑇 = [0.1, 0, 0]

𝑇, [𝑥, 𝑦, 𝜓]𝑇 = [10, 30, −𝜋/4]

𝑇 is the
initial position and orientation vector of ship, and the desired
velocity of ship is given as 𝑢

𝑑
= 1 (m/s). We choose the

reference trajectory as 10 cos𝜔𝑡.
In order to further verify the validity of the proposed

control method, the algorithm of this paper is compared with
the simulation results in [12]. So the robustness of trajec-
tory tracking controller against the disturbance and model
uncertainties can be evaluated. All the simulation results
are depicted in Figures 1–4. Figure 1 shows the trajectory
tracking of ship with the given path, and the ship can track
and converge to the reference path with more accuracy in
[12]. Figure 2 plots the position tracking errors; the along-
track and cross-track errors asymptotically converge to zero
faster. Figure 3 gives the control inputs response. Surge, sway,
yaw velocities, and orientation of ship during the trajectory
tracking control process are plotted in Figure 4, which gives
a clear insight into the model response involved in nonlinear
dynamics.

5. Conclusions

In this paper, we proposed a solution to the course control
of underactuated surface vessel. Firstly, the direct adaptive
neural network control and its application are introduced.
Then the backstepping controller with robust neural network
is designed to deal with the uncertain and underactuated
characteristics for the ship. Neural networks are adopted to
determine the parameters of the unknown part of the ideal
virtual control and the ideal control; even the weights of
neural network are updated by using adaptive technique.
Finally uniform stability for the convergence of tracking
errors has been proven through Lyapunov stability theory.
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Figure 2: Tracking errors of surge and sway.
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Figure 4: State changing curves of ship.

The simulation results illustrate the performance of the
proposed course tracking controller with good precision.
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